Branched coverings of maps and lifts of map homomorphisms
نویسندگان
چکیده
In this article we generalize both ordinary and permutation voltage constructions to obtain all branched coverings of maps. We approach a map as a set of flags together with three fixed-point-free involutions and relate this approach with other standard representations. We define a lift as a function from these flags into a group. Ordinary voltage and ordinary current assignments are special cases of our lifts. We interpret our construction as an assignment of voltages to the corners of an embedded graph. We describe a simple necessary and sufficient condition for a map homomorphism of base graphs to lift to a homomorphism of covering graphs. As an application we construct centrally-symmetric self-dual spherical polyhedra.
منابع مشابه
- homomorphisms , transfers and branched coverings
The main purpose is to characterise continuous maps that are n-branched coverings in terms of induced maps on the rings of functions. The special properties of Frobenius n-homomorphisms between two function spaces that correspond to n-branched coverings are determined completely. Several equivalent definitions of a Frobenius n-homomorphism are compared and some of their properties are proved. A...
متن کاملFrobenius n-homomorphisms, transfers and branched coverings
The main purpose is to characterise continuous maps that are n-branched coverings in terms of induced maps on the rings of functions. The special properties of Frobenius nhomomorphisms between two function spaces that correspond to n-branched coverings are determined completely. Several equivalent definitions of a Frobenius n-homomorphism are compared and some of their properties are proved. An...
متن کاملRegular Cyclic Coverings of the Platonic Maps
The Möbius-Kantor map {4 + 4, 3} [CMo, §8.8, 8.9] is a regular orientable map of type {8, 3} and genus 2. It is a 2-sheeted covering of the cube {4, 3}, branched over the centers of its six faces, each of which lifts to an octagonal face. Its (orientation-preserving) automorphism group is isomorphic to GL2(3), a double covering of the automorphism group PGL2(3) ∼= S4 of the cube. The aim of thi...
متن کاملThe Thurston Type Theorem for Branched Coverings of Two-Sphere
I give a survey about a program which intends to find topological characterizations of a rational map and then use them to study the rigidity problem for rational maps. Thurston started this program by considering critically finite branched coverings and gave a necessary and sufficient combinatorial condition for a critically finite rational maps among all critically finite branched coverings. ...
متن کاملAlgorithmic aspects of branched coverings
This is the announcement, and the long summary, of a series of articles on the algorithmic study of Thurston maps. We describe branched coverings of the sphere in terms of group-theoretical objects called bisets, and develop a theory of decompositions of bisets. We introduce a canonical “Levy” decomposition of an arbitrary Thurston map into homeomorphisms, metrically-expanding maps and maps dou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 9 شماره
صفحات -
تاریخ انتشار 1994